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Abstract: Probabilistic encryption is the use of randomness in an encryption algorithm, so that when encrypting the same message 

several times it will, in general, yield different ciphertexts. To be semantically secure, that is, to hide even partial information about 

the plaintext, an encryption algorithm must be probabilistic. The Goldwasser–Micali cryptosystem is an asymmetric key encryption 

algorithm developed by ShafiGoldwasser and Silvio Micali in 1982. Goldwasser-Micali has the distinction of being the first 

probabilistic public-key encryption scheme which is provably secure under standard cryptographic assumptions. However, it is not 

an efficient  cryptosystem, as ciphertexts may be several hundred times larger than the initial plaintext. The aim of this paper is to 

outline the key concepts involved in Goldwasser-Micali encryption algorithm and compare it with RSA . The metrics used for 

comparison are encryption time,decryption time and size of cipher text with varying plain text sizes which are the key considerations 

for choosing an encryption algorithm. The reading will be recorded for drawing inferences. 

 

I. INTRODUCTION 

One of the drawbacks to the RSA encryption algorithm as 

originally defined is that it leaks a single plaintext bit in 

every ciphertext. This bit is the Jacobi symbol of the 

plaintext, and is either “1” or “−1.” Since e is odd it is 

straightforward to see that J (m/n) =J (m
e
/n) for all valid 

RSA plaintexts m. 

This observation pointed to a problem in public key 

cryptography in general. It should not be possible for an 

adversary to so much as even distinguish one encryption 

from another. This problem can be formulated as an 

experiment. Let an adversary choose any two different 

plaintexts m1 and m2, let the encryption algorithm choose 

one of the messages randomly, encrypt it, give the 

resulting ciphertext to the adversary, and then let the 

adversary guess which message was encrypted. In a truly 

secure public key cryptosystem the adversary should be 

able to guess with probability significantly greater than 1/2 

which message was encrypted. In RSA, the adversary can 

choose a messagem1such that J(m1/n) = 1 and another 

message m2 such that J(m2/n) =−1 and then distinguish 

correctly everytime. 

The GM cryptosystem was the first cryptosystem to 

provably solve this problem. It was presented by 

Goldwasser and Micali along with a rigorous definition of 

security known as semantic security and a proof that the 

GM cryptosystem is semantically secure against plaintext 

attacks. 

The objectives of the paper are to give a detailed 

explanation of the concepts involved in Goldwasser-

Micali Encryption algorithm, to outline the steps involved 

in encryption and decryption using Goldwasser-Micali  

 
 

algorithm and to compare and analyze RSA versus 

Goldwasser-Micali algorithm. 

The paper is organised as follows, Section II discusses the 

various concepts such as Homomorphic Cryptosystem, 

Quadratic Residues and Jacobi symbols. Section III 

outlines the pseudocode of the Goldwasser-Micali 

encryption and decryption algorithm. Section IV describes 

the details of the implementation which includes hardware 

and software requirements of the test machine, 

programming languages and libraries used. Section V 

deals with the results and analysis which explains the 

details of the comparisons that were done between RSA 

and Goldwasser-Micali algorithm. Section VII is 

Conclusion which gives the outcome of the work carried 

out and future enhancements. 

II. CONCEPTS IN GM 

A.XOR Homomorphism 

 The system is homorphic in that multiplying 

ciphertexts is equivalent to XORing plaintexts. Note the 

following congruences: 

EGM(b1,r1;ɡ,N)· EGM (b2,r2;ɡ,N)≡ɡ
b
1

+b
2(r1r2)

2
  (mod N)  

≡EGM(b1⨁b2,r1 r2;ɡ,N)(mod N) 

where b1 and b2 are the bits of the input and r1 and r2 are 

the random blinding factors. 

The last equality holds because only the least bit of b1+b2 

matters in determining quadratic residuosity, and ⨁ is 

equivalent to modulo 2 addition[3]. 

B.Quadratic Residue 

A number is a quadratic residue modulo an odd prime p if 

it is the square of some number modulo p. 
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The Legendre symbol is defined as 

                       0      𝑖𝑓 𝑥 ≡ 0  (mod p) 

 
𝑥

𝑝
 =               1    𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝 

                          −1   𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑛𝑜𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝 

By Euler’s criterion, we compute  
𝑥
𝑝
 = 𝑥

𝑝−1
2     (𝑚𝑜𝑑 𝑝).                                                                                                          

In the case of composite modulus, the Jacobi symbol is 

used instead of the Legendre symbol.[3] 

C.Jacobi Symbol 

For N = pq, where p and q are odd primes, the Jacobi 

symbol is 

                             0      𝑖𝑓 gcd 𝑥, 𝑁 > 1 

 
𝑥

𝑁
  =              1     𝑖𝑓   

𝑥

𝑝
 =   

𝑥

𝑞
  

                          −1    𝑖𝑓   
𝑥

𝑝
 =  −  

𝑥

𝑞
  

Lemma:  𝑥is a quadratic residue modulo N if   
𝑥

𝑝
 =   

𝑥

𝑞
 =

1. If  𝑥is a quadratic residue modulo N2then it is a 

quadratic residue modulo N. 

Proof :  If 𝑥 ϵ QR(N) then 𝑥 = 𝑦2 + 𝑘𝑁 =  𝑦2 + 𝑘𝑝𝑞 for 

some y, 𝑘, so 𝑥 ≡ 𝑦2 (𝑚𝑜𝑑 𝑝) and  𝑥 𝑚𝑜𝑑 𝑝 ϵ QR(p). 

The same holds for q, so  
𝑥

𝑝
 =   

𝑥

𝑞
 = 1. Given 𝑥 such that 

 
𝑥

𝑝
 =   

𝑥

𝑞
 = 1, we know that there exist a and b such that 𝑎2   

≡ 𝑥 𝑚𝑜𝑑 𝑝 and 𝑏2≡ 𝑥 𝑚𝑜𝑑 𝑞 . By the Chinese Remainder 

Theorem, there exists a𝑦such that𝑦 ≡𝑎 𝑚𝑜𝑑 𝑝  and 𝑦 ≡ 

𝑏 𝑚𝑜𝑑 𝑞 . Since,𝑦2 ≡  𝑥 (𝑚𝑜𝑑 𝑝)and 𝑦2 ≡  𝑥 𝑚𝑜𝑑 𝑞 , we 

know that 𝑦2 ≡  𝑥 (𝑚𝑜𝑑 𝑁), and therefore 𝑥 ϵ QR(N). If 𝑥 

ϵ QR(N2) then 𝑥 = 𝑦2 + 𝑘𝑁2 for some y, 𝑘, so 𝑥 𝑚𝑜𝑑 𝑁ϵ 

QR(N).[3]
 

III.GM Algorithm 

A. Key generation for Goldwasser-Micali probabilistic 

encryption 

Each entity creates a public key and corresponding private 

key. Each entity A should do the following[4]: 

1. Select two large random and distinct primes p 

and q, each roughly the same size. 

2. Compute𝑛 = 𝑝𝑞. 

3. Select 𝑦ϵZn such that 𝑦is a quadratic non-residue 

modulo𝑛and the Jacobi sumbol (
𝑦

𝑛
) = 1(y is a 

pseudosquare modulo𝑛). 

4. A’s public key is (𝑛, 𝑦)andA’s private key is the 

pair (p,q). 
 

B. Goldwasser-Micali probabilistic public-key encryption 

B encrypts a message m for A, which A decrypts.[4] 

1. Encryption: B should do the following: 

(a) Obtain A’s authentic public key (𝑛, 𝑦). 

(b) Represent the message m as a binary string m = 

m1m2…mt of length t. 

(c) For i  from 1 to t do: 

i. Pick an𝑥 belongs to Zn
*
at random. 

ii. If mi = 1 then set ci ← y 𝑥 2
mod 𝑛, otherwise set 

ci ← 𝑥2
 mod n. 

(d) Send the t -tuple c=(c1, c2,… ct) to A. 

 

2. Decryption: To recover plaintext m from c, A 

should do the following 

(a) For i from 1 to t do: 

i. Compute the Legendre symbol  

ei = (
𝑐𝑖

𝑝
) 

ii. If ei = 1 then set mi ← 0; otherwise set mi ← 1 

(b) The decrypted message is m = m1 m2…mt.[4] 

C. Proof that Decryption works 

If a message bit mi is 0, then ci = 𝑥 2
 mod𝑛is a quadratic 

residue modulo 𝑛. If a message bit mi is 1, then since y is a 

pseudosquare modulo n, ci = y𝑥2mod 𝑛 is also a 

pseudosquare modulo 𝑛. ci is a quadratic residue modulo 𝑛 

if and only if ci is a quadratic residue modulo p, or 

equivalently (
𝑐𝑖

𝑝
) =1. Since A knows p, she can compute 

this legendre symbol and hence recover the message bit 

mi[4]. 
 

D. Security of Goldwasser-Micali probabilistic Encryption 

There is a simple reduction from breaking this 

cryptosystem to the problem of determining whether a 

random value modulo N with Jacobi symbol +1 is a 

quadratic residue. If an algorithm A breaks the 

cryptosystem, then to determine if a given value x is a 

quadratic residue modulo N, we test A to see if it can break 

the cryptosystem using (x,N) as a public key. If x is a non-

residue, then A should work properly. However, if x is a 

residue, then every "ciphertext" will simply be a random 

quadratic residue, so A cannot be correct more than half of 

the time. Furthermore, this problem is random self-

reducible, which ensures that for a given N, every public 

key is just as secure as every other public key.                                                                                 

http://en.wikipedia.org/wiki/Reduction_(complexity)
http://en.wikipedia.org/w/index.php?title=Random_self-reduction&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Random_self-reduction&action=edit&redlink=1


ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 7, July 2013 

 

Copyright to IJARCCE                                                                               www.ijarcce.com                                                                  2820 

 The GM cryptosystem has homomorphic 

properties, in the sense that if c0, c1 are the encryptions of 

bits m0, m1, then c0c1 mod N will be an encryption 

of m0⨁m1. For this.reason, the GM cryptosystem is 

sometimes used in more complex cryptographic 

primitives.  Since 𝑥 is selected at random from Zn
*
, 𝑥 2 

mod 𝑛 is a random quadratic residue modulo 𝑛, and y𝑥2 

mod 𝑛 is a random pseudosquare modulo 𝑛. Hence, an 

eavesdropper sees random quadratic residues and 

pseudosquares modulo 𝑛. Assuming that the quadratic 

residuosity problem is difficult, the eavesdropper can do 

no better than guess each message bit. More formally, if 

the quadratic residuosity problem is hard, then the 

Goldwasser-Micali encryption scheme is semantically 

secure. 

 

IV. IMPLEMENTATION ENVIRONMENT 

A. Functional Requirements 

Based on the chosen prime numbers p and q, in the range 

of 1 to N (where N isproduct of p and q) all the quadratic 

non-residues are printed. The user has to choose one 

among the displayed quadratic non residues (z). The 

public key is (N,z) and private key is(p,q). The user then 

inputs the plaintext which is encrypted using the keys 

generated. The ciphertext hence obtained is decrypted to 

get back the plaintext. 

 

B. Software Requirements  

Python version 2.7- Python is a remarkably powerful 

dynamic programming language that isused in a wide 

variety of application domains. Python is often compared 

to Tcl, Perl, Ruby, Scheme or Java. Some of its key 

distinguishing features include: 

 very clear, readable syntax 

 strong introspection capabilities 

 intuitive object orientation 

 natural expression of procedural code 

 full modularity, supporting hierarchical packages 

 exception-based error handling 

 very high level dynamic data types 

 extensive standard libraries and third party 

modules for virtually every task 

 extensions and modules easily written in C, C++ 

(or Java for Jython, or .NET languages for Iron Python) 

 embeddable within applications as a scripting 

interface 

 

V. RESULTS AND ANALYSIS 

This section with the details of the experiments that were 

conducted and demonstrates the performance analysis 

ofGoldwasser-Micali cryptosystem. The parameters 

considered to evaluate the performance are plaintext size 

versus ciphertext size, encryption time, decryption time 

and time to generate Jacobi symbols. 

A. Encryption Time 

The graph of time taken for encryption against size of 

plaintext in bytes has been plotted as shown in figure 1. 

The value and N and z were fixed as 2537 and 2 

respectively. Encryption time of RSA remained almost 

constant between plaintext sizes 2 to 6 and 8 to 26 bytes. It 

increased drastically from around 3 milli seconds to 14 

milli seconds when plaintext size was increased from 6 

bytes to 8 bytes.  

In contrast Goldwasser-Micali had greater varying 

encryption times reaching a maximum of 26 milli second 

plain text of 18 bytes and minimum of 3.8 milli seconds 

for plain text of 4 bytes. 

The average encryption time for RSA and Goldwasser-

Micali were found to be 12.77 ms and 14.9 ms 

respectively. This indicates Goldwasser-Micali takes 

slightly more time compared for encryption than RSA but 

it is also more secure against attacks. 

 

 

Fig 1: Encryption times for RSA and GM 

 

B. Decryption Time 

The graph of time taken for decryption against size of 

plaintext in bytes has been plotted as shown in figure 2. 

The value and N and z were fixed as 2537 and 2 

respectively. Decryption time of RSA remained almost 

constant between plaintext sizes 2 to 26 bytes.  

In contrast Goldwasser-Micali had greater varying 

encryption times reaching a maximum of 27.5milli second 

plain text of 6 bytes and minimum of 3.6milli seconds for 

plain text of 20 bytes. 

The average encryption time for RSA and Goldwasser-

Micali were found to be 16 ms and 17.65ms respectively. 

http://en.wikipedia.org/wiki/Homomorphic_encryption
http://en.wikipedia.org/wiki/Homomorphic_encryption
http://en.wikipedia.org/wiki/Homomorphic_encryption


ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 7, July 2013 

 

Copyright to IJARCCE                                                                               www.ijarcce.com                                                                  2821 

This indicates GoldwasserMicali takes slightly more time 

compared even for decryption than RSA but it is also more 

secure against attacks. 

 

 

Fig 2: Decryption times for RSA and GM 

 

C. Plaintext size versus Ciphertext size 

 

RSA and Goldwasser Micali show a linear increase in the 

number of blocks of ciphertext generated for increasing 

plain text sizes. However the increase is more pronounced 

in the case of Goldwasser Micali. This can be attributed to 

the generation of a random value for every bit of plain text 

in Goldwasser micali. 

Hence for applications in which Ciphertext size is more 

important than security RSA is preferred of 

GoldwasserMicali. 

 

Fig 3: Plaintext versus Ciphertext size for RSA and GM 

 

      D. Time taken to generate Jacobi symbols 

 The graph of time taken to generate Jacobi 

symbols against various values of N has been plotted as 

shown in figure 4. 

This time does not depend only on the value of N but also 

the prime factors of considered in the code. It can be seen 

that as N is increased to higher values the rate of increase 

in the time to generate Jacobi symbols increases. Hence a 

drastic increase from 8 seconds to 102 seconds when N’s 

value is increased from 2537 to 11413. 

 This time is an overhead in Goldwasser micali 

compared to RSA and hence as we saw previously 

encryption time in Goldwasser Micali is more compared to 

RSA. 

 

 

Fig 4: Time to generate Jacobi symbols 

 

VI. FUTURE ENHANCEMENTS 

Currently RSA algorithm is used in the SSL layer for 

encrypting the data. As it is inferred that Goldwasser 

Micali algorithm is more secure than the RSA algorithm 

from the above results, we would like to implement this 

algotithm in the SSL layer to enhance the performance of 

it. 

 

VII. CONCLUSION 

Goldwasser and Micali develop a bit encryption function 

based on the number theoretic problem of quadratic 

residuosity. The method has many useful properties, but 

there is one major drawback: for a given security 

parameter N, the probabilistic encryption of each bit is N 

bits long, requires N random bits, and uses several 

operation on N bit integers.A major disadvantage of the 

Goldwasser-Micali scheme is the message expansion by a 

factor of lg n bits. Some message expansion is 

unavoidable in a probabilistic encryption scheme because 

there are many ciphertexts corresponding to each 

plaintext[4]. 

 Paper[6] describes a dense method of 

probabilistic encryption which, unlike the method of 
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Goldwasser and Micali, is capable of encrypting more than 

1 bit at time. For any given k and security parameter N, 

this new method allows the encryption of k bits of 

information into an N + k bit ciphertext using N + k 

random bits and operations on N + k bit integers. Thus, for 

any desired security parameter N, the ratio of plaintext 

size to ciphertextsize(as well as to random bits required or 

to the size of the integers computed upon) can be made 

arbitrarily close to one. 

 There are also some applications where one bit at 

a time probabilistic encryption is unsuitable regardless of 

efficiency. Paper [6] describes two such applications - 

non-interactive verifiable secret sharing and a method for 

obtaining verifiable secret-ballot elections, in which the 

dense probabilistic encryption method described here can 

be used while there is no apparent way of developing 

similar solutions with bitwise probabilistic encryption. 
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